


DIAGRAMAS UNIFILARES

* - NÃO FOI POSSÍVEL IDENTIFICAR QUAIS AS CARGAS ALIMENTADAS POR ESTES CIRCUÍTOS, VERIFICAR NA OBRA E FAZER A INTERLIGAÇÃO DO RAMAL NA CAIXA DE MEDIÇÃO QUE SERÁ DESATIVADA COPEL INTERRLIGAÇÃO DO RAMAL SERÁ FEITA NA ENTRADA DO DISJUNTOR EXISTENTE

* - NÃO FOI POSSÍVEL IDENTIFICAR QUAIS AS CARGAS ALIMENTADAS POR ESTES CIRCUÍTOS, VERIFICAR NA OBRA E FAZER A INTERLIGAÇÃO DO RAMAL NA CAIXA DE MEDIÇÃO QUE SERÁ DESATIVADA COPEL INTERRLIGAÇÃO DO RAMAL SERÁ FEITA NA ENTRADA DO DISJUNTOR EXISTENTE

	QUADRO DE CARGAS - QDG													
	Circuito	Tensão	Potência				Corrente	Seção dos	Proteção			Fases		
n°	Tipo	(V)		Potencia(W)	FP	Total (VA)	(A)	condutores (m m 2)	Tipo	nº de polos	Corrente nominal	Α	В	С
4	QD AR 01	220	1	100522	0,9	109263	287,08	2X70	DTM	3	300	33507	33507	33507
5	QD AR 02	220	1	72510	0,9	78815	207,08	70,0	DTM	3	150	24170	24170	24170
43	RESERVA													
44	RESERVA													
45	RESERVA													
	TOTAL	220				188078	494,16	70,0		3	400	57677	57677	57677

(DTM = disjuntor termomagnético, IDR = Interruptor diferencial-residual, DTM-C = disjuntor termomagnético tipo curva C)

Circuito				Potência	a		Carranta	Seção dos	Proteção			Fases		
n°	Tipo	Tensão (V)		Potencia(W)	₽	Total (VA)	Corrente (A)	condutores (m m 2)	Tipo	n° de polos	Corrente nominal	Α	В	С
4	COND. AR CONDICIONADO 1	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
5	COND. AR CONDICIONADO 2	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
6	COND. AR CONDICIONADO 3	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
7	COND. AR CONDICIONADO 4	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
8	COND. AR CONDICIONADO 5	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
9	COND. AR CONDICIONADO 6	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
4	COND. AR CONDICIONADO 7	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
5	COND. AR CONDICIONADO 8	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
6	COND. AR CONDICIONADO 9	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
7	COND. AR CONDICIONADO 10	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
8	COND. AR CONDICIONADO 11	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
9	COND. AR CONDICIONADO 12	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
	QD EXISTENTE	220	1	52522	0,9	57089	150,00	70,0	DTM	3	150	17507	17507	17507
43	RESERVA													
44	RESERVA													
45	RESERVA													
	TOTAL	109263			287.08 2X70		3 300		33507	33507	33507			

	Circuito	Tensão	Potê ncia Potê ncia				Corrente	Seção dos	Proteção			Fases		
n°	Tipo		Quantidade	Potencia(W)	FP	Total (VA)	(A)	condutores (m m 2)	Tipo	nº de polos	Corrente nominal	Α	В	С
4	COND. AR CONDICIONADO 13	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
5	COND. AR CONDICIONADO 14	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
6	COND. AR CONDICIONADO 15	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
7	COND. AR CONDICIONADO 16	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
8	COND. AR CONDICIONADO 17	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
9	COND. AR CONDICIONADO 18	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
4	COND. AR CONDICIONADO 19	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
5	COND. AR CONDICIONADO 20	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
6	COND. AR CONDICIONADO 21	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
7	COND. AR CONDICIONADO 22	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000	2000	
В	COND. AR CONDICIONADO 23	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32		2000	2000
9	COND. AR CONDICIONADO 24	220	1	4000	0,9	4348	19,76	6,0	DTM-C	2	32	2000		2000
	QD EXISTENTE	220	1	24510	0,9	26641	70,00	35,0	DTM	3	70	8170	8170	8170
13	RESERVA													
4	RESERVA													
5	RESERVA													
	TOTAL	220				78815	207,08	70,0		3	150	24170	24170	24170

SIMBOLOGIA

\rightarrow	DISJUNTOR MONOFÁSICO
\neq	DISJUNTOR BIFÁSICO
\neq	DISJUNTOR TRIFÁSICO
}	INTERRUPTOR DIFERENCIAL BIPOLAR
 	INTERRUPTOR DIFERENCIAL TETRAPOLAR
\$ ⁄_c	CONTATOR

NOTAS

- OS CONDUTORES NÃO ESPECIFICADOS TERÃO CLASSE DE ISOLAMENTO 750V.

- O CONDUTOR DE ATERRAMENTO DEVERÁ SER CONTÍNUO DO NEUTRO À HASTE - AS DIMENSÕES DOS ELETRODUTOS SÃO INTERNAS.

- PARA ATERRAMENTO ATÉ # 10 mm2, PERMANECE A BITOLA INDICADA DAS FASES.

- LER ATENTAMENTE O MEMORIAL DESCRITIVO ANTES DE INICIAR O SERVIÇO DAS INSTALAÇÕES ELÉTRICAS.

- OS DISJUNTORES NÃO ESPECIFICADOS EM PLANTA TERÃO CORRENTE DE INTERRUPÇÃO DE 4,5KA, CURVA "C".

- NÃO DEVERÁ SER UTILIZADO MATERIAL DE FERRO NOS COMPONENTES ELÉTRICOS DA ENTRADA DE SERVIÇO.

- TODAS AS PARTES METÁLICAS NÃO ENERGIZADAS DEVERÃO SER ATERRADAS.

- OS CIRCUITOS A JUSANTE AO DISPOSITIVO "DR" DEVERÃO POSSUIR BARRAMENTO DE NEUTRO SEPARADO DOS CIRCUITOS QUE NÃO ESTÃO CONECTADOS AO "DR".

- IDENTIFICAR AS FASES A, B E C NAS CORES AMARELA, BRANCA E VERMELHA, RESPECTIVAMENTE DESDE A ENTRADA DE ENERGIA ATÉ AS MEDIÇÕES.

- OS DISJUNTORES ATÉ 100A, INSTALADOS NOS CM'S DEVERÃO SER ADQUIRIDOS DE FABRICANTES

- A BARRA DE NEUTRO DEVERÁ SER FIXADA SOBRE ISOLADORES E A DE TERRA DIRETAMENTE AO QUADRO.

 OS BARRAMENTOS DO QGBT'S DEVERÃO SER MONTADOS DE FORMA ESCALONADA, SER ESTANHADOS E POSSUIR FURAÇÕES DE DIÂMETRO 14mm.
 A DISTÂNCIA DO CONDUTOR DE LIGAÇÃO DO DPS À BARRA DE TERRA, DEVERÁ SER DE NO MÁXIMO 0,50m, CONFORME FIGURA 15 DO ITEM 6.3.5.2.9 DA NBR-5410.

- TODOS OS QUADROS DE ENERGIA DEVEM ATENDER INTEGRALMENTE AS PRECONIZAÇÕES VIGENTES

- TODOS OS QUADROS DE MEDIÇÃO E CABINES DEVEM ATENDER PADRÕES DAS CONCESSIONÁRIAS

-TODOS OS QUADROS DEVEM POSSUIR PLAQUETAS DE IDENTIFICAÇÃO CONTENDO - NOME, TENSÃO ,

FUNÇÃO, ETC..
- TODOS OS QUADROS SOMENTE PODEM SER CONFECCIONADOS APÓS APROVAÇÃO DO CLIENTE E

STORIA. .

- PARA IDENTIFICAR AS BITOLAS DOS ALIMENTADORES INDICADAS POR TAG's, VIDE PRANCHA 1.

PROJETO ELÉTRICO

	PROJETO LLLTRICO	
]BRA:	ESCOLA MUNICIPAL DE ALTO	PARAÍSO
	TE: 01,02,03,04,05,24,25-A,26-B,27-B e 28- QU RUA PROF.º RITA HELENA GARCIA MELO - ALTO I	
PROPRIETARIO:		PARA
	PREFEITURA MUNICIPAL DE ALTO PARAÍSO CNPJ: 95.640.736/0001-30	
PRANCHA:	PROJETO:	
EL	PLANTA BAIXA	
2/3	LEGENDA	
ESCALA:	RESPONSAVEL TÉCNICO:	
INDICADA	HUGO LEONARDO JOSÉ DA COSTA ENGENHEIRO ELETRIÇISTA	