

Município de Assis Chateaubriand

ESTADO DO PARANÁ <u>DIMENSIONAMENTO DO PAVIMENTO</u>

OBRA: PAVIMENTAÇÃO DE VIAS URBANAS **LOCAL:** DISTRITO TERRA NOVA DO PIQUIRI

CIDADE: ASSIS CHATEAUBRIAND PR.

PROGRAMA: SISTEMA DE FINANCIAMENTO DE AÇÕES NOS MUNICÍPIOS DO ESTADO DO

PARANA (SFM)

1 - Caracterização das Cargas

• Tipo de Tráfego previsto

Tráfego leve
Tráfego médio
Tráfego pesado
Tráfego pesado
10,00%

• Período de Projeto – 10 anos

2 - Seção Transversal e Capacidade de Suporte

CAMADA	DISCRIMINAÇÃO	ESPESSURA (CM)	CAPACIDADE DE SUPORTE (IS) KG	COEFICIENTE EQUIVALÊNCIA ESTRUTURAL
BASE	BRITA GRADUADA	12,00	-	3,00
SUB LEITO	REGULARIZAÇÃO E COMPACTAÇÃO 100%PN	15,00	10,80	2,00

3 - Memória de Cálculo do Dimensionamento

3.1 – Estudo do Subleito e Jazidas

3.1.1 – Reconhecimento do Subleito – Método D.N.E.R.

Para reconhecimento do Subleito foram feitos estudos em duas fases:

- a) Inspeção feita no local da obra constatou-se que o material existente apresentou textura de características argilosa.
- b) Realização dos ensaios, com as amostras coletadas foram realizados em laboratórios os seguintes ensaios:
 - Granulometria;
 - Limite de Liquidez;
 - Limite de Plasticidade;
 - Compactação com energia do Proctor Normal;
 - Índice de Suporte Califórnia (CBR);

Os resultados obtidos classificam o solo como sendo argiloso com classificação

HRB A7-5.

Município de Assis Chateaubriand ESTADO DO PARANÁ

3.1.2 – <u>Determinação das Espessuras do Pavimento</u>

Para o dimensionamento do pavimento foi utilizado o método do D.N.E.R., sendo à base de brita graduada.

- 3.2 Dimensionamento do Pavimento Método D.N.E.R.
- 3.2.1 Estudo do tráfego e determinação do número equivalente de eixo padrão.

3.2.2 - Características do material do subleito - valores médios

TRECHO PAVIMENTADO									
MÉDIA GERAL DA RUA A PAVIMENTAR									
	PERÍODO			TEMPO DE CONTAGEM					
07/08/23 (segunda-feira) a 09/08/23 (quarta-feira)			8,00 HORAS/DIA						
1	ΓΙΡΟ DE	SEGUNDA	TERÇA	QUARTA	D M	%			
V	EÍCULO								
	CP	18	10	12	10	27,17			
ON		02	02	02	02	4,34			
СМ	LEVE	10	9	11	10	33,08			
	MÉDIO	8	5	6	06	25,05			
	PESADO	8	8	9	08	10,36			
SOMA		26	22	26	24				
TOTAL		46	34	40	40	100,00			
HORA PICO		7:30-8:30	7:30-8:30	7:30-8:30					
VOLUME PICO		09	11	11					

B – Volume Inicial de Tráfego num Sentido Vo= 46 veículos por dia

D – taxa de crescimento linear
$$T = 5\%$$
 A.A.

$$V_{m} = \underline{V_{o}} + \underline{V_{p}} = V_{o} \underline{(2 + (P \times t))}$$

$$V_m = 46 \times (2 + (10 \times 0.05)) = 58$$

Vm = 58 veículos por dia

FE – Fator por eixo (FE):

70% veículos com 02 eixos; 20% veículos com 03 eixos; 10% veículos com 04 eixos;

Município de Assis Chateaubriand ESTADO DO PARANÁ

$$FE = n/Vo$$

 $FE = ((44x2) + (8x3) + (3x4))55 = 2,2545$

G – Fator de Carga

74,50% veículos com menos de 5 toneladas;

15,50% veículos com 10 toneladas;

10,00% veículos com 12 toneladas;

FC = Equivalência/100 (Gráfico fator de equivalência de operações, fonte DENIT.):

$$FC = 1/100 \text{ x } ((54,4x65x0,1)+(25,5x65x3)+(20x65x10))/100$$

FC = 1,832

H = Fator Climático Regional

$$FR = 0.7$$

I = Número de operação de eixo padrão (8,20T), para o período do projeto:

$$N = 365 \times P \times V_m \times FE \times FC \times FR$$

$$N = 365 \times 10 \times 65 \times 2,2545 \times 1,832 \times 0,7$$

$$N = 6.86 \times 10^5$$

3.2.3 – Verificação do índice de suporte (IS) do subleito

$$IS = \underline{IS_{CBR} + IS_{IG}}$$

Impondo-se IS < CBR e sendo IS _{CBR} = CBR, e da análise das características do subleito temos:

- CBR mínimo adotado = 10,90 (Proctor Normal):
- $IG = 17 \Rightarrow IS_{IG} = 3$ (tabela Wlastmiller Senço)
- Portanto IS = $\frac{10.9 + 3}{2}$ = 6.95

Portanto sendo IS≤ CBR (condicionado)

Então podemos adotar CBR = 10,90 (mínimo) – (Proctor Normal)

3.2.4 - Coeficientes Estruturais

- Concreto Betuminoso Usinado a Quente CBUQ K_r = 2,00;
- Base brita graduada $K_B = 2,00$

3.2.5 – Cálculo das espessuras das camadas

Cálculo pelo gráfico de CBR em função do número de equivalência de operação de eixo padrão (N):

- Adotando revestimento em CBUQ com espessura de 4,00cm e base de brita graduada:
- Base brita graduada (B) = R x $K_r + B x K_B \ge H_{20}$
- $4,00 \times 2 + B \times 2 \ge 35$
- B \geq 14,5 cm

Avenida Civica, 99 Jardim America Tef. (44) 3528-8455 CEP: 85.935-000-ASSIS CHATEAUBREIAND PR

Município de Assis Chateaubriand ESTADO DO PARANÁ

- Portanto, adotaremos espessura da base de 15,00cm levando em consideração o movimento haverá nas ruas do Jardim Araçá.

3.2.6 – Revestimento Adotado

Concreto Betuminoso Usinado a Quente – CBUQ pela qualidade do revestimento, facilidade de aquisição, durabilidade e custo/beneficio.

Espessura do Revestimento Asfáltico:

Devido ao volume de trafego na via, adotamos espessura mínima de 4,00cm, possibilitando a adoção de granulometria do CBUQ na faixa "C" do D.E.R, o que propicia maior durabilidade ao revestimento betuminoso.

Referências Técnicas:

- -Manual de Pavimentação DENIT.
- -Manual de Técnicas de Pavimentação Wlastmiller Senço (1997).

Assis Chateaubriand, 14 de novembro de 2023.

Andressa Beatriz Michelin Engenheira Civil – CREA-PR 178435/D